Abstract:Predicting the next activity of a running process is an important aspect of process management. Recently, artificial neural networks, so called deep-learning approaches, have been proposed to address this challenge. This demo paper describes a software application that applies the Tensorflow deep-learning framework to process prediction. The software application reads industry-standard XES files for training and presents the user with an easy-to-use graphical user interface for both training and prediction. The system provides several improvements over earlier work. This demo paper focuses on the software implementation and describes the architecture and user interface.
Abstract:Predicting business process behaviour is an important aspect of business process management. Motivated by research in natural language processing, this paper describes an application of deep learning with recurrent neural networks to the problem of predicting the next event in a business process. This is both a novel method in process prediction, which has largely relied on explicit process models, and also a novel application of deep learning methods. The approach is evaluated on two real datasets and our results surpass the state-of-the-art in prediction precision.