Abstract:Luminoso participated in the SemEval 2018 task on "Capturing Discriminative Attributes" with a system based on ConceptNet, an open knowledge graph focused on general knowledge. In this paper, we describe how we trained a linear classifier on a small number of semantically-informed features to achieve an $F_1$ score of 0.7368 on the task, close to the task's high score of 0.75.
Abstract:This paper describes Luminoso's participation in SemEval 2017 Task 2, "Multilingual and Cross-lingual Semantic Word Similarity", with a system based on ConceptNet. ConceptNet is an open, multilingual knowledge graph that focuses on general knowledge that relates the meanings of words and phrases. Our submission to SemEval was an update of previous work that builds high-quality, multilingual word embeddings from a combination of ConceptNet and distributional semantics. Our system took first place in both subtasks. It ranked first in 4 out of 5 of the separate languages, and also ranked first in all 10 of the cross-lingual language pairs.