Abstract:In this paper, we propose an evolutionary predatorprey robot system which can be generally implemented from simulation to the real world. We design the closed-loop robot system with camera and infrared sensors as inputs of controller. Both the predators and prey are co-evolved by NeuroEvolution of Augmenting Topologies (NEAT) to learn the expected behaviours. We design a framework that integrate Gym of OpenAI, Robot Operating System (ROS), Gazebo. In such a framework, users only need to focus on algorithms without being worried about the detail of manipulating robots in both simulation and the real world. Combining simulations, real-world evolution, and robustness analysis, it can be applied to develop the solutions for the predator-prey tasks. For the convenience of users, the source code and videos of the simulated and real world are published on Github.