Abstract:When there exists uncertainty, AI machines are designed to make decisions so as to reach the best expected outcomes. Expectations are based on true facts about the objective environment the machines interact with, and those facts can be encoded into AI models in the form of true objective probability functions. Accordingly, AI models involve probabilistic machine learning in which the probabilities should be objectively interpreted. We prove under some basic assumptions when machines can learn the true objective probabilities, if any, and when machines cannot learn them.
Abstract:We critically review three major theories of machine learning and provide a new theory according to which machines learn a function when the machines successfully compute it. We show that this theory challenges common assumptions in the statistical and the computational learning theories, for it implies that learning true probabilities is equivalent neither to obtaining a correct calculation of the true probabilities nor to obtaining an almost-sure convergence to them. We also briefly discuss some case studies from natural language processing and macroeconomics from the perspective of the new theory.