Abstract:Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature. This pilot study investigated temporal changes in MB signals during bolus injections in both pig and human models to optimize data acquisition for clinical ULM. Quantitative indices were developed to evaluate MB signal quality, guiding selection of acquisition timing that balances the MB localization quality and adequate MB counts. The effects of transmitted voltage and dosage were also explored. In the pig model, a relatively short window (approximately 10 seconds) for optimal acquisition was identified during the rapid wash-out phase, highlighting the need for real-time MB signal monitoring during data acquisition. The slower wash-out phase in humans allowed for a more flexible imaging window of 1-2 minutes, while trade-offs were observed between localization quality and MB density (or acquisition length) at different wash-out phase timings. Guided by these findings, robust ULM imaging was achieved in both pig and human kidneys using a short period of data acquisition, demonstrating its feasibility in clinical practice. This study provides insights into optimizing data acquisition for consistent and reproducible ULM, paving the way for its standardization and broader clinical applications.
Abstract:The data rate of airborne radar is much higher than the wireless data transfer rate in many detection applications, so the onboard data storage systems are usually used to store the radar data. Data storage systems with good seismic performance usually use NAND Flash as storage medium, and there is a widespread problem of long file management time, which seriously affects the data storage speed, especially under the limitation of platform miniaturization. To solve this problem, a data storage method based on machine learning is proposed for mini-airborne radar. The storage training model is established based on machine learning, and could process various kinds of radar data. The file management methods are classified and determined using the model, and then are applied to the storage of radar data. To verify the performance of the proposed method, a test was carried out on the data storage system of a mini-airborne radar. The experimental results show that the method based on machine learning can form various data storage methods adapted to different data rates and application scenarios. The ratio of the file management time to the actual data writing time is extremely low.