Abstract:Time-variant standard Sylvester-conjugate matrix equations are presented as early time-variant versions of the complex conjugate matrix equations. Current solving methods include Con-CZND1 and Con-CZND2 models, both of which use ode45 for continuous model. Given practical computational considerations, discrete these models is also important. Based on Euler-forward formula discretion, Con-DZND1-2i model and Con-DZND2-2i model are proposed. Numerical experiments using step sizes of 0.1 and 0.001. The above experiments show that Con-DZND1-2i model and Con-DZND2-2i model exhibit different neural dynamics compared to their continuous counterparts, such as trajectory correction in Con-DZND2-2i model and the swallowing phenomenon in Con-DZND1-2i model, with convergence affected by step size. These experiments highlight the differences between optimizing sampling discretion errors and space compressive approximation errors in neural dynamics.
Abstract:Large-scale linear equations and high dimension have been hot topics in deep learning, machine learning, control,and scientific computing. Because of special conjugate operation characteristics, time-variant complex conjugate matrix equations need to be transformed into corresponding real field time-variant large-scale linear equations. In this paper, zeroing neural dynamic models based on complex field error (called Con-CZND1) and based on real field error (called Con-CZND2) are proposed for in-depth analysis. Con-CZND1 has fewer elements because of the direct processing of complex matrices. Con-CZND2 needs to be transformed into the real field, with more elements, and its performance is affected by the main diagonal dominance of coefficient matrices. A neural hypercomplex numbers space compressive approximation approach (NHNSCAA) is innovatively proposed. Then Con-CZND1 conj model is constructed. Numerical experiments verify Con-CZND1 conj model effectiveness and highlight NHNSCAA importance.
Abstract:Complex conjugate matrix equations (CCME) have aroused the interest of many researchers because of computations and antilinear systems. Existing research is dominated by its time-invariant solving methods, but lacks proposed theories for solving its time-variant version. Moreover, artificial neural networks are rarely studied for solving CCME. In this paper, starting with the earliest CCME, zeroing neural dynamics (ZND) is applied to solve its time-variant version. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 model and Con-CZND2 model are proposed and theoretically prove convergence and effectiveness. Thirdly, three numerical experiments are designed to illustrate the effectiveness of the two models, compare their differences, highlight the significance of neural dynamics in the complex field, and refine the theory related to ZND.