Abstract:Multiplayer Online Battle Arena (MOBA) is one of the most successful game genres. MOBA games such as League of Legends have competitive environments where players race for their rank. In most MOBA games, a player's rank is determined by the match result (win or lose). It seems natural because of the nature of team play, but in some sense, it is unfair because the players who put a lot of effort lose their rank just in case of loss and some players even get free-ride on teammates' efforts in case of a win. To reduce the side-effects of the team-based ranking system and evaluate a player's performance impartially, we propose a novel embedding model that converts a player's actions into quantitative scores based on the actions' respective contribution to the team's victory. Our model is built using a sequence-based deep learning model with a novel loss function working on the team match. The sequence-based deep learning model process the action sequence from the game start to the end of a player in a team play using a GRU unit that takes a hidden state from the previous step and the current input selectively. The loss function is designed to help the action score to reflect the final score and the success of the team. We showed that our model can evaluate a player's individual performance fairly and analyze the contributions of the player's respective actions.