Abstract:This paper introduces a user-friendly platform developed by the University of Kentucky Center for Applied AI, designed to make large, customized language models (LLMs) more accessible. By capitalizing on recent advancements in multi-LoRA inference, the system efficiently accommodates custom adapters for a diverse range of users and projects. The paper outlines the system's architecture and key features, encompassing dataset curation, model training, secure inference, and text-based feature extraction. We illustrate the establishment of a tenant-aware computational network using agent-based methods, securely utilizing islands of isolated resources as a unified system. The platform strives to deliver secure LLM services, emphasizing process and data isolation, end-to-end encryption, and role-based resource authentication. This contribution aligns with the overarching goal of enabling simplified access to cutting-edge AI models and technology in support of scientific discovery.
Abstract:Machine learning classification problems are widespread in bioinformatics, but the technical knowledge required to perform model training, optimization, and inference can prevent researchers from utilizing this technology. This article presents an automated tool for machine learning classification problems to simplify the process of training models and producing results while providing informative visualizations and insights into the data. This tool supports both binary and multiclass classification problems, and it provides access to a variety of models and methods. Synthetic data can be generated within the interface to fill missing values, balance class labels, or generate entirely new datasets. It also provides support for feature evaluation and generates explainability scores to indicate which features influence the output the most. We present CLASSify, an open-source tool for simplifying the user experience of solving classification problems without the need for knowledge of machine learning.
Abstract:This paper introduces an approach that combines the language reasoning capabilities of large language models (LLMs) with the benefits of local training to tackle complex, domain-specific tasks. Specifically, the authors demonstrate their approach by extracting structured condition codes from pathology reports. The proposed approach utilizes local LLMs, which can be fine-tuned to respond to specific generative instructions and provide structured outputs. The authors collected a dataset of over 150k uncurated surgical pathology reports, containing gross descriptions, final diagnoses, and condition codes. They trained different model architectures, including LLaMA, BERT and LongFormer and evaluated their performance. The results show that the LLaMA-based models significantly outperform BERT-style models across all evaluated metrics, even with extremely reduced precision. The LLaMA models performed especially well with large datasets, demonstrating their ability to handle complex, multi-label tasks. Overall, this work presents an effective approach for utilizing LLMs to perform domain-specific tasks using accessible hardware, with potential applications in the medical domain, where complex data extraction and classification are required.