Abstract:While large language models have rapidly evolved towards general artificial intelligence, their versatility in analyzing time series data remains limited. To address this limitation, we propose a novel normalization technique that considers the inherent nature of tokenization. The proposed Tokenization-Optimized Normalization (TOKON) simplifies time series data by representing each element with a single token, effectively reducing the number of tokens by 2 to 3 times. Additionally, we introduce a novel prompt for time series forecasting, termed Time Series Forecasting with Care (TFSC), to further enhance forecasting performance. Experimental results demonstrate that TOKON improves root mean square error (RMSE) for multi-step forecasting by approximately 7% to 18%, depending on the dataset and prompting method. Furthermore, TFSC, when used in conjunction with TOKON, shows additional improvements in forecasting accuracy for certain datasets
Abstract:With the evolution of large language models (LLMs), there is growing interest in leveraging LLMs for time series tasks. In this paper, we explore the characteristics of LLMs for time series forecasting by considering various existing and proposed prompting techniques. Forecasting for both short and long time series was evaluated. Our findings indicate that no single prompting method is universally applicable. It was also observed that simply providing proper context information related to the time series, without additional reasoning prompts, can achieve performance comparable to the best-performing prompt for each case. From this observation, it is expected that providing proper context information can be more crucial than a prompt for specific reasoning in time series forecasting. Several weaknesses in prompting for time series forecasting were also identified. First, LLMs often fail to follow the procedures described by the prompt. Second, when reasoning steps involve simple algebraic calculations with several operands, LLMs often fail to calculate accurately. Third, LLMs sometimes misunderstand the semantics of prompts, resulting in incomplete responses.