Abstract:We present Pro-DG, a framework for procedurally controllable photo-realistic facade generation that combines a procedural shape grammar with diffusion-based image synthesis. Starting from a single input image, we reconstruct its facade layout using grammar rules, then edit that structure through user-defined transformations. As facades are inherently multi-hierarchical structures, we introduce hierarchical matching procedure that aligns facade structures at different levels which is used to introduce control maps to guide a generative diffusion pipeline. This approach retains local appearance fidelity while accommodating large-scale edits such as floor duplication or window rearrangement. We provide a thorough evaluation, comparing Pro-DG against inpainting-based baselines and synthetic ground truths. Our user study and quantitative measurements indicate improved preservation of architectural identity and higher edit accuracy. Our novel method is the first to integrate neuro-symbolically derived shape-grammars for modeling with modern generative model and highlights the broader potential of such approaches for precise and controllable image manipulation.
Abstract:We introduce a neuro-symbolic transformer-based model that converts flat, segmented facade structures into procedural definitions using a custom-designed split grammar. To facilitate this, we first develop a semi-complex split grammar tailored for architectural facades and then generate a dataset comprising of facades alongside their corresponding procedural representations. This dataset is used to train our transformer model to convert segmented, flat facades into the procedural language of our grammar. During inference, the model applies this learned transformation to new facade segmentations, providing a procedural representation that users can adjust to generate varied facade designs. This method not only automates the conversion of static facade images into dynamic, editable procedural formats but also enhances the design flexibility, allowing for easy modifications and variations by architects and designers. Our approach sets a new standard in facade design by combining the precision of procedural generation with the adaptability of neuro-symbolic learning.