Abstract:This study explores how different weather conditions influence public sentiment on social media, focusing on Twitter data from the UK. By considering climate and linguistic baselines, we improve the accuracy of weather-related sentiment analysis. Our findings show that emotional responses to weather are complex, influenced by combinations of weather variables and regional language differences. The results highlight the importance of context-sensitive methods for better understanding public mood in response to weather, which can enhance impact-based forecasting and risk communication in the context of climate change.
Abstract:Researchers commonly perform sentiment analysis on large collections of short texts like tweets, Reddit posts or newspaper headlines that are all focused on a specific topic, theme or event. Usually, general purpose sentiment analysis methods are used which perform well on average but miss the variation in meaning that happens across different contexts, for example, the word "active" has a very different intention and valence in the phrase "active lifestyle" versus "active volcano". This work presents a new approach, CIDER (Context Informed Dictionary and sEntiment Reasoner), which performs context sensitive sentiment analysis, where the valence of sentiment laden terms is inferred from the whole corpus before being used to score the individual texts. In this paper we detail the CIDER algorithm and demonstrate that it outperforms state-of-the-art generalist sentiment analysis on a large collection of tweets about the weather. We have made our implementation of CIDER available as a python package: https://pypi.org/project/ciderpolarity/.