Abstract:The mathematical complexity and high dimensionality of neural networks hinder the training and deployment of machine learning (ML) systems while also requiring substantial computational resources. This fundamental limitation drives ML research, particularly in the exploration of alternative neural network architectures that integrate novel building blocks, such as advanced activation functions. Tunnel diodes are well-known electronic components that utilise the physical effect of quantum tunnelling (QT). Here, we propose using the current voltage characteristic of a tunnel diode as a novel, physics-based activation function for neural networks. We demonstrate that the tunnel-diode activation function (TDAF) outperforms traditional activation functions in terms of accuracy and loss during both training and evaluation. We also highlight its potential for implementation in electronic circuits suited to developing neuromorphic, quantum-inspired AI systems capable of operating in environments not suitable for qubit-based quantum computing hardware.