Abstract:The growing reliance of society on social media for authentic information has done nothing but increase over the past years. This has only raised the potential consequences of the spread of misinformation. One of the growing methods in popularity is to deceive users using a deepfake. A deepfake is an invention that has come with the latest technological advancements, which enables nefarious online users to replace their face with a computer generated, synthetic face of numerous powerful members of society. Deepfake images and videos now provide the means to mimic important political and cultural figures to spread massive amounts of false information. Models that can detect these deepfakes to prevent the spread of misinformation are now of tremendous necessity. In this paper, we propose a new deepfake detection schema utilizing two deep learning algorithms: long short term memory and multilayer perceptron. We evaluate our model using a publicly available dataset named 140k Real and Fake Faces to detect images altered by a deepfake with accuracies achieved as high as 74.7%
Abstract:In the recent years, social media has grown to become a major source of information for many online users. This has given rise to the spread of misinformation through deepfakes. Deepfakes are videos or images that replace one persons face with another computer-generated face, often a more recognizable person in society. With the recent advances in technology, a person with little technological experience can generate these videos. This enables them to mimic a power figure in society, such as a president or celebrity, creating the potential danger of spreading misinformation and other nefarious uses of deepfakes. To combat this online threat, researchers have developed models that are designed to detect deepfakes. This study looks at various deepfake detection models that use deep learning algorithms to combat this looming threat. This survey focuses on providing a comprehensive overview of the current state of deepfake detection models and the unique approaches many researchers take to solving this problem. The benefits, limitations, and suggestions for future work will be thoroughly discussed throughout this paper.
Abstract:The amount of secure data being stored on mobile devices has grown immensely in recent years. However, the security measures protecting this data have stayed static, with few improvements being done to the vulnerabilities of current authentication methods such as physiological biometrics or passwords. Instead of these methods, behavioral biometrics has recently been researched as a solution to these vulnerable authentication methods. In this study, we aim to contribute to the research being done on behavioral biometrics by creating and evaluating a user authentication scheme using behavioral biometrics. The behavioral biometrics used in this study include touch dynamics and phone movement, and we evaluate the performance of different single-modal and multi-modal combinations of the two biometrics. Using two publicly available datasets - BioIdent and Hand Movement Orientation and Grasp (H-MOG), this study uses seven common machine learning algorithms to evaluate performance. The algorithms used in the evaluation include Random Forest, Support Vector Machine, K-Nearest Neighbor, Naive Bayes, Logistic Regression, Multilayer Perceptron, and Long Short-Term Memory Recurrent Neural Networks, with accuracy rates reaching as high as 86%.