Abstract:Accurate simulations of oil spill trajectories are essential for supporting practitioners' response and mitigating environmental and socioeconomic impacts. Numerical models, such as MEDSLIK-II, simulate advection, dispersion, and transformation processes of oil particles. However, simulations heavily rely on accurate parameter tuning, still based on expert knowledge and manual calibration. To overcome these limitations, we integrate the MEDSLIK-II numerical oil spill model with a Bayesian optimization framework to iteratively estimate the best physical parameter configuration that yields simulation closer to satellite observations of the slick. We focus on key parameters, such as horizontal diffusivity and drift factor, maximizing the Fraction Skill Score (FSS) as a measure of spatio-temporal overlap between simulated and observed oil distributions. We validate the framework for the Baniyas oil incident that occurred in Syria between August 23 and September 4, 2021, which released over 12,000 $m^3$ of oil. We show that, on average, the proposed approach systematically improves the FSS from 5.82% to 11.07% compared to control simulations initialized with default parameters. The optimization results in consistent improvement across multiple time steps, particularly during periods of increased drift variability, demonstrating the robustness of our method in dynamic environmental conditions.
Abstract:Precise energy load forecasting in residential households is crucial for mitigating carbon emissions and enhancing energy efficiency; indeed, accurate forecasting enables utility companies and policymakers, who advocate sustainable energy practices, to optimize resource utilization. Moreover, smart meters provide valuable information by allowing for granular insights into consumption patterns. Building upon available smart meter data, our study aims to cluster consumers into distinct groups according to their energy usage behaviours, effectively capturing a diverse spectrum of consumption patterns. Next, we design JITtrans (Just In Time transformer), a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy, with respect to traditional forecasting methods. Extensive experimental results validate our claims using proprietary smart meter data. Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems: the development of efficient and eco-friendly energy solutions critically depends on such technologies.