Abstract:The rapid growth of the Internet of Things (IoT) has revolutionized industries, enabling unprecedented connectivity and functionality. However, this expansion also increases vulnerabilities, exposing IoT networks to increasingly sophisticated cyberattacks. Intrusion Detection Systems (IDS) are crucial for mitigating these threats, and recent advancements in Machine Learning (ML) offer promising avenues for improvement. This research explores a hybrid approach, combining several standalone ML models such as Random Forest (RF), XGBoost, K-Nearest Neighbors (KNN), and AdaBoost, in a voting-based hybrid classifier for effective IoT intrusion detection. This ensemble method leverages the strengths of individual algorithms to enhance accuracy and address challenges related to data complexity and scalability. Using the widely-cited IoT-23 dataset, a prominent benchmark in IoT cybersecurity research, we evaluate our hybrid classifiers for both binary and multi-class intrusion detection problems, ensuring a fair comparison with existing literature. Results demonstrate that our proposed hybrid models, designed for robustness and scalability, outperform standalone approaches in IoT environments. This work contributes to the development of advanced, intelligent IDS frameworks capable of addressing evolving cyber threats.
Abstract:In recent years, the evolution of machine learning techniques has significantly impacted the field of intrusion detection, particularly within the context of the Internet of Things (IoT). As IoT networks expand, the need for robust security measures to counteract potential threats has become increasingly critical. This paper introduces a hybrid Intrusion Detection System (IDS) that synergistically combines Kolmogorov-Arnold Networks (KANs) with the XGBoost algorithm. Our proposed IDS leverages the unique capabilities of KANs, which utilize learnable activation functions to model complex relationships within data, alongside the powerful ensemble learning techniques of XGBoost, known for its high performance in classification tasks. This hybrid approach not only enhances the detection accuracy but also improves the interpretability of the model, making it suitable for dynamic and intricate IoT environments. Experimental evaluations demonstrate that our hybrid IDS achieves an impressive detection accuracy exceeding 99% in distinguishing between benign and malicious activities. Additionally, we were able to achieve F1 scores, precision, and recall that exceeded 98%. Furthermore, we conduct a comparative analysis against traditional Multi-Layer Perceptron (MLP) networks, assessing performance metrics such as Precision, Recall, and F1-score. The results underscore the efficacy of integrating KANs with XGBoost, highlighting the potential of this innovative approach to significantly strengthen the security framework of IoT networks.