Abstract:This work initiates the systematic study of explicit distributions that are indistinguishable from a single exponential-size combinatorial object. In this we extend the work of Goldreich, Goldwasser and Nussboim (SICOMP 2010) that focused on the implementation of huge objects that are indistinguishable from the uniform distribution, satisfying some global properties (which they coined truthfulness). Indistinguishability from a single object is motivated by the study of generative models in learning theory and regularity lemmas in graph theory. Problems that are well understood in the setting of pseudorandomness present significant challenges and at times are impossible when considering generative models of huge objects. We demonstrate the versatility of this study by providing a learning algorithm for huge indistinguishable objects in several natural settings including: dense functions and graphs with a truthfulness requirement on the number of ones in the function or edges in the graphs, and a version of the weak regularity lemma for sparse graphs that satisfy some global properties. These and other results generalize basic pseudorandom objects as well as notions introduced in algorithmic fairness. The results rely on notions and techniques from a variety of areas including learning theory, complexity theory, cryptography, and game theory.
Abstract:The notion of omnipredictors (Gopalan, Kalai, Reingold, Sharan and Wieder ITCS 2021), suggested a new paradigm for loss minimization. Rather than learning a predictor based on a known loss function, omnipredictors can easily be post-processed to minimize any one of a rich family of loss functions compared with the loss of a class $C$. It has been shown that such omnipredictors exist and are implied (for all convex and Lipschitz loss functions) by the notion of multicalibration from the algorithmic fairness literature. Nevertheless, it is often the case that the action selected must obey some additional constraints (such as capacity or parity constraints). In itself, the original notion of omnipredictors does not apply in this well-motivated and heavily studied the context of constrained loss minimization. In this paper, we introduce omnipredictors for constrained optimization and study their complexity and implications. The notion that we introduce allows the learner to be unaware of the loss function that will be later assigned as well as the constraints that will be later imposed, as long as the subpopulations that are used to define these constraints are known. The paper shows how to obtain omnipredictors for constrained optimization problems, relying on appropriate variants of multicalibration. For some interesting constraints and general loss functions and for general constraints and some interesting loss functions, we show how omnipredictors are implied by a variant of multicalibration that is similar in complexity to standard multicalibration. We demonstrate that in the general case, standard multicalibration is insufficient and show that omnipredictors are implied by multicalibration with respect to a class containing all the level sets of hypotheses in $C$. We also investigate the implications when the constraints are group fairness notions.