Abstract:Our review explores the comparative analysis between Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) in the domain of image classification, with a particular focus on clothing classification within the e-commerce sector. Utilizing the Fashion MNIST dataset, we delve into the unique attributes of CNNs and ViTs. While CNNs have long been the cornerstone of image classification, ViTs introduce an innovative self-attention mechanism enabling nuanced weighting of different input data components. Historically, transformers have primarily been associated with Natural Language Processing (NLP) tasks. Through a comprehensive examination of existing literature, our aim is to unveil the distinctions between ViTs and CNNs in the context of image classification. Our analysis meticulously scrutinizes state-of-the-art methodologies employing both architectures, striving to identify the factors influencing their performance. These factors encompass dataset characteristics, image dimensions, the number of target classes, hardware infrastructure, and the specific architectures along with their respective top results. Our key goal is to determine the most appropriate architecture between ViT and CNN for classifying images in the Fashion MNIST dataset within the e-commerce industry, while taking into account specific conditions and needs. We highlight the importance of combining these two architectures with different forms to enhance overall performance. By uniting these architectures, we can take advantage of their unique strengths, which may lead to more precise and reliable models for e-commerce applications. CNNs are skilled at recognizing local patterns, while ViTs are effective at grasping overall context, making their combination a promising strategy for boosting image classification performance.
Abstract:In the field of dentistry, there is a growing demand for increased precision in diagnostic tools, with a specific focus on advanced imaging techniques such as computed tomography, cone beam computed tomography, magnetic resonance imaging, ultrasound, and traditional intra-oral periapical X-rays. Deep learning has emerged as a pivotal tool in this context, enabling the implementation of automated segmentation techniques crucial for extracting essential diagnostic data. This integration of cutting-edge technology addresses the urgent need for effective management of dental conditions, which, if left undetected, can have a significant impact on human health. The impressive track record of deep learning across various domains, including dentistry, underscores its potential to revolutionize early detection and treatment of oral health issues. Objective: Having demonstrated significant results in diagnosis and prediction, deep convolutional neural networks (CNNs) represent an emerging field of multidisciplinary research. The goals of this study were to provide a concise overview of the state of the art, standardize the current debate, and establish baselines for future research. Method: In this study, a systematic literature review is employed as a methodology to identify and select relevant studies that specifically investigate the deep learning technique for dental imaging analysis. This study elucidates the methodological approach, including the systematic collection of data, statistical analysis, and subsequent dissemination of outcomes. Conclusion: This work demonstrates how Convolutional Neural Networks (CNNs) can be employed to analyze images, serving as effective tools for detecting dental pathologies. Although this research acknowledged some limitations, CNNs utilized for segmenting and categorizing teeth exhibited their highest level of performance overall.
Abstract:To have the greatest impact, public health initiatives must be made using evidence-based decision-making. Machine learning Algorithms are created to gather, store, process, and analyse data to provide knowledge and guide decisions. A crucial part of any surveillance system is image analysis. The communities of computer vision and machine learning has ended up curious about it as of late. This study uses a variety of machine learning and image processing approaches to detect and forecast the malarial illness. In our research, we discovered the potential of deep learning techniques as smart tools with broader applicability for malaria detection, which benefits physicians by assisting in the diagnosis of the condition. We examine the common confinements of deep learning for computer frameworks and organising, counting need of preparing data, preparing overhead, realtime execution, and explain ability, and uncover future inquire about bearings focusing on these restrictions.