Abstract:Turn-taking prediction is the task of anticipating when the speaker in a conversation will yield their turn to another speaker to begin speaking. This project expands on existing strategies for turn-taking prediction by employing a multi-modal ensemble approach that integrates large language models (LLMs) and voice activity projection (VAP) models. By combining the linguistic capabilities of LLMs with the temporal precision of VAP models, we aim to improve the accuracy and efficiency of identifying TRPs in both scripted and unscripted conversational scenarios. Our methods are evaluated on the In-Conversation Corpus (ICC) and Coached Conversational Preference Elicitation (CCPE) datasets, highlighting the strengths and limitations of current models while proposing a potentially more robust framework for enhanced prediction.
Abstract:This study investigates game-based learning in the context of the educational game "Jo Wilder and the Capitol Case," focusing on predicting student performance using various machine learning models, including K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), and Random Forest. The research aims to identify the features most predictive of student performance and correct question answering. By leveraging gameplay data, we establish complete benchmarks for these models and explore the importance of applying proper data aggregation methods. By compressing all numeric data to min/max/mean/sum and categorical data to first, last, count, and nunique, we reduced the size of the original training data from 4.6 GB to 48 MB of preprocessed training data, maintaining high F1 scores and accuracy. Our findings suggest that proper preprocessing techniques can be vital in enhancing the performance of non-deep-learning-based models. The MLP model outperformed the current state-of-the-art French Touch model, achieving an F-1 score of 0.83 and an accuracy of 0.74, suggesting its suitability for this dataset. Future research should explore using larger datasets, other preprocessing techniques, more advanced deep learning techniques, and real-world applications to provide personalized learning recommendations to students based on their predicted performance. This paper contributes to the understanding of game-based learning and provides insights into optimizing educational game experiences for improved student outcomes and skill development.