ICB, UB
Abstract:Recent advancements in large language models have demonstrated significant potential in the automated construction of knowledge graphs from unstructured text. This paper builds upon our previous work [16], which evaluated various models using metrics like precision, recall, F1 score, triple matching, and graph matching, and introduces a refined approach to address the critical issues of hallucination and omission. We propose an enhanced evaluation framework incorporating BERTScore for graph similarity, setting a practical threshold of 95% for graph matching. Our experiments focus on the Mistral model, comparing its original and fine-tuned versions in zero-shot and few-shot settings. We further extend our experiments using examples from the KELM-sub training dataset, illustrating that the fine-tuned model significantly improves knowledge graph construction accuracy while reducing the exact hallucination and omission. However, our findings also reveal that the fine-tuned models perform worse in generalization tasks on the KELM-sub dataset. This study underscores the importance of comprehensive evaluation metrics in advancing the state-of-the-art in knowledge graph construction from textual data.
Abstract:The use of knowledge graphs (KGs) enhances the accuracy and comprehensiveness of the responses provided by a conversational agent. While generating answers during conversations consists in generating text from these KGs, it is still regarded as a challenging task that has gained significant attention in recent years. In this document, we provide a review of different architectures used for knowledge graph-to-text generation including: Graph Neural Networks, the Graph Transformer, and linearization with seq2seq models. We discuss the advantages and limitations of each architecture and conclude that the choice of architecture will depend on the specific requirements of the task at hand. We also highlight the importance of considering constraints such as execution time and model validity, particularly in the context of conversational agents. Based on these constraints and the availability of labeled data for the domains of DAVI, we choose to use seq2seq Transformer-based models (PLMs) for the Knowledge Graph-to-Text Generation task. We aim to refine benchmark datasets of kg-to-text generation on PLMs and to explore the emotional and multilingual dimensions in our future work. Overall, this review provides insights into the different approaches for knowledge graph-to-text generation and outlines future directions for research in this area.