Abstract:Motivated by Generative Adversarial Networks, we study the computation of Nash equilibrium in concave network zero-sum games (NZSGs), a multiplayer generalization of two-player zero-sum games first proposed with linear payoffs. Extending previous results, we show that various game theoretic properties of convex-concave two-player zero-sum games are preserved in this generalization. We then generalize last iterate convergence results obtained previously in two-player zero-sum games. We analyze convergence rates when players update their strategies using Gradient Ascent, and its variant, Optimistic Gradient Ascent, showing last iterate convergence in three settings -- when the payoffs of players are linear, strongly concave and Lipschitz, and strongly concave and smooth. We provide experimental results that support these theoretical findings.
Abstract:In non-truthful auctions, agents' utility for a strategy depends on the strategies of the opponents and also the prior distribution over their private types; the set of Bayes Nash equilibria generally has an intricate dependence on the prior. Using the First Price Auction as our main demonstrating example, we show that $\tilde O(n / \epsilon^2)$ samples from the prior with $n$ agents suffice for an algorithm to learn the interim utilities for all monotone bidding strategies. As a consequence, this number of samples suffice for learning all approximate equilibria. We give almost matching (up to polylog factors) lower bound on the sample complexity for learning utilities. We also consider settings where agents must pay a search cost to discover their own types. Drawing on a connection between this setting and the first price auction, discovered recently by Kleinberg et al. (2016), we show that $\tilde O(n / \epsilon^2)$ samples suffice for utilities and equilibria to be estimated in a near welfare-optimal descending auction in this setting. En route, we improve the sample complexity bound, recently obtained by Guo et al. (2019), for the Pandora's Box problem, which is a classical model for sequential consumer search.