Abstract:Quantum machine learning (QML) has emerged as a promising domain to leverage the computational capabilities of quantum systems to solve complex classification tasks. In this work, we present first comprehensive QML study by benchmarking the MedMNIST-a diverse collection of medical imaging datasets on a 127-qubit real IBM quantum hardware, to evaluate the feasibility and performance of quantum models (without any classical neural networks) in practical applications. This study explore recent advancements in quantum computing such as device-aware quantum circuits, error suppression and mitigation for medical image classification. Our methodology comprised of three stages: preprocessing, generation of noise-resilient and hardware-efficient quantum circuits, optimizing/training of quantum circuits on classical hardware, and inference on real IBM quantum hardware. Firstly, we process all input images in the preprocessing stage to reduce the spatial dimension due to the quantum hardware limitations. We generate hardware-efficient quantum circuits using backend properties expressible to learn complex patterns for medical image classification. After classical optimization of QML models, we perform the inference on real quantum hardware. We also incorporates advanced error suppression and mitigation techniques in our QML workflow including dynamical decoupling (DD), gate twirling, and matrix-free measurement mitigation (M3) to mitigate the effects of noise and improve classification performance. The experimental results showcase the potential of quantum computing for medical imaging and establishes a benchmark for future advancements in QML applied to healthcare.
Abstract:A key step in interpreting gas-phase ion mobility coupled with mass spectrometry (IM-MS) data for unknown structure prediction involves identifying the most favorable protonated structure. In the gas phase, the site of protonation is determined using proton affinity (PA) measurements. Currently, mass spectrometry and ab initio computation methods are widely used to evaluate PA; however, both methods are resource-intensive and time-consuming. Therefore, there is a critical need for efficient methods to estimate PA, enabling the rapid identification of the most favorable protonation site in complex organic molecules with multiple proton binding sites. In this work, we developed a fast and accurate method for PA prediction by using multiple descriptors in combination with machine learning (ML) models. Using a comprehensive set of 186 descriptors, our model demonstrated strong predictive performance, with an R2 of 0.96 and a MAE of 2.47kcal/mol, comparable to experimental uncertainty. Furthermore, we designed quantum circuits as feature encoders for a classical neural network. To evaluate the effectiveness of this hybrid quantum-classical model, we compared its performance with traditional ML models using a reduced feature set derived from the full set. The result showed that this hybrid model achieved consistent performance comparable to traditional ML models with the same reduced feature set on both a noiseless simulator and real quantum hardware, highlighting the potential of quantum machine learning for accurate and efficient PA predictions.