Abstract:We study the densest subgraph problem and its variants through the lens of learning-augmented algorithms. For this problem, the greedy algorithm by Charikar (APPROX 2000) provides a linear-time $ 1/2 $-approximation, while computing the exact solution typically requires solving a linear program or performing maximum flow computations.We show that given a partial solution, i.e., one produced by a machine learning classifier that captures at least a $ (1 - \epsilon) $-fraction of nodes in the optimal subgraph, it is possible to design an extremely simple linear-time algorithm that achieves a provable $ (1 - \epsilon) $-approximation. Our approach also naturally extends to the directed densest subgraph problem and several NP-hard variants.An experiment on the Twitch Ego Nets dataset shows that our learning-augmented algorithm outperforms Charikar's greedy algorithm and a baseline that directly returns the predicted densest subgraph without additional algorithmic processing.
Abstract:In this work, we provide data stream algorithms that compute optimal splits in decision tree learning. In particular, given a data stream of observations $x_i$ and their labels $y_i$, the goal is to find the optimal split point $j$ that divides the data into two sets such that the mean squared error (for regression) or misclassification rate (for classification) is minimized. We provide various fast streaming algorithms that use sublinear space and a small number of passes for these problems. These algorithms can also be extended to the massively parallel computation model. Our work, while not directly comparable, complements the seminal work of Domingos and Hulten (KDD 2000).