Abstract:Dimensionality reduction is an important preprocessing step of the hyperspectral images classification (HSI), it is inevitable task. Some methods use feature selection or extraction algorithms based on spectral and spatial information. In this paper, we introduce a new methodology for dimensionality reduction and classification of HSI taking into account both spectral and spatial information based on mutual information. We characterise the spatial information by the texture features extracted from the grey level cooccurrence matrix (GLCM); we use Homogeneity, Contrast, Correlation and Energy. For classification, we use support vector machine (SVM). The experiments are performed on three well-known hyperspectral benchmark datasets. The proposed algorithm is compared with the state of the art methods. The obtained results of this fusion show that our method outperforms the other approaches by increasing the classification accuracy in a good timing. This method may be improved for more performance Keywords: hyperspectral images; classification; spectral and spatial features; grey level cooccurrence matrix; GLCM; mutual information; support vector machine; SVM.
Abstract:Nowadays, the hyperspectral remote sensing imagery HSI becomes an important tool to observe the Earth's surface, detect the climatic changes and many other applications. The classification of HSI is one of the most challenging tasks due to the large amount of spectral information and the presence of redundant and irrelevant bands. Although great progresses have been made on classification techniques, few studies have been done to provide practical guidelines to determine the appropriate classifier for HSI. In this paper, we investigate the performance of four supervised learning algorithms, namely, Support Vector Machines SVM, Random Forest RF, K-Nearest Neighbors KNN and Linear Discriminant Analysis LDA with different kernels in terms of classification accuracies. The experiments have been performed on three real hyperspectral datasets taken from the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor AVIRIS and the Reflective Optics System Imaging Spectrometer ROSIS sensors. The mutual information had been used to reduce the dimensionality of the used datasets for better classification efficiency. The extensive experiments demonstrate that the SVM classifier with RBF kernel and RF produced statistically better results and seems to be respectively the more suitable as supervised classifiers for the hyperspectral remote sensing images. Keywords: hyperspectral images, mutual information, dimension reduction, Support Vector Machines, K-Nearest Neighbors, Random Forest, Linear Discriminant Analysis.
Abstract:Band selection is a great challenging task in the classification of hyperspectral remotely sensed images HSI. This is resulting from its high spectral resolution, the many class outputs and the limited number of training samples. For this purpose, this paper introduces a new filter approach for dimension reduction and classification of hyperspectral images using information theoretic (normalized mutual information) and support vector machines SVM. This method consists to select a minimal subset of the most informative and relevant bands from the input datasets for better classification efficiency. We applied our proposed algorithm on two well-known benchmark datasets gathered by the NASA's AVIRIS sensor over Indiana and Salinas valley in USA. The experimental results were assessed based on different evaluation metrics widely used in this area. The comparison with the state of the art methods proves that our method could produce good performance with reduced number of selected bands in a good timing. Keywords: Dimension reduction, Hyperspectral images, Band selection, Normalized mutual information, Classification, Support vector machines
Abstract:Recently, the hyperspectral sensors have improved our ability to monitor the earth surface with high spectral resolution. However, the high dimensionality of spectral data brings challenges for the image processing. Consequently, the dimensionality reduction is a necessary step in order to reduce the computational complexity and increase the classification accuracy. In this paper, we propose a new filter approach based on information gain for dimensionality reduction and classification of hyperspectral images. A special strategy based on hyperspectral bands selection is adopted to pick the most informative bands and discard the irrelevant and noisy ones. The algorithm evaluates the relevancy of the bands based on the information gain function with the support vector machine classifier. The proposed method is compared using two benchmark hyperspectral datasets (Indiana, Pavia) with three competing methods. The comparison results showed that the information gain filter approach outperforms the other methods on the tested datasets and could significantly reduce the computation cost while improving the classification accuracy. Keywords: Hyperspectral images; dimensionality reduction; information gain; classification accuracy. Keywords: Hyperspectral images; dimensionality reduction; information gain; classification accuracy.
Abstract:During the last decade, hyperspectral images have attracted increasing interest from researchers worldwide. They provide more detailed information about an observed area and allow an accurate target detection and precise discrimination of objects compared to classical RGB and multispectral images. Despite the great potentialities of hyperspectral technology, the analysis and exploitation of the large volume data remain a challenging task. The existence of irrelevant redundant and noisy images decreases the classification accuracy. As a result, dimensionality reduction is a mandatory step in order to select a minimal and effective images subset. In this paper, a new filter approach normalized mutual synergy (NMS) is proposed in order to detect relevant bands that are complementary in the class prediction better than the original hyperspectral cube data. The algorithm consists of two steps: images selection through normalized synergy information and pixel classification. The proposed approach measures the discriminative power of the selected bands based on a combination of their maximal normalized synergic information, minimum redundancy and maximal mutual information with the ground truth. A comparative study using the support vector machine (SVM) and k-nearest neighbor (KNN) classifiers is conducted to evaluate the proposed approach compared to the state of art band selection methods. Experimental results on three benchmark hyperspectral images proposed by the NASA "Aviris Indiana Pine", "Salinas" and "Pavia University" demonstrated the robustness, effectiveness and the discriminative power of the proposed approach over the literature approaches. Keywords: Hyperspectral images; target detection; pixel classification; dimensionality reduction; band selection; information theory; mutual information; normalized synergy
Abstract:Feature selection is one of the most important problems in hyperspectral images classification. It consists to choose the most informative bands from the entire set of input datasets and discard the noisy, redundant and irrelevant ones. In this context, we propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE) using support vector machine (SVM) to reduce the dimensionality of the used hyperspectral images and increase the classification efficiency. The experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS). Several metrics had been calculated to evaluate the performance of the proposed algorithm. The obtained results prove that our method can increase the classification performance and provide an accurate thematic map in comparison with other reproduced algorithms. This method may be improved for more classification efficiency. Keywords-Feature selection, hyperspectral images, classification, wrapper, normalized mutual information, support vector machine.
Abstract:The Hyperspectral image (HSI) contains several hundred bands of the same region called the Ground Truth (GT). The bands are taken in juxtaposed frequencies, but some of them are noisily measured or contain no information. For the classification, the selection of bands, affects significantly the results of classification, in fact, using a subset of relevant bands, these results can be better than those obtained using all bands, from which the need to reduce the dimensionality of the HSI. In this paper, a categorization of dimensionality reduction methods, according to the generation process, is presented. Furthermore, we reproduce an algorithm based on mutual information (MI) to reduce dimensionality by features selection and we introduce an algorithm using mutual information and homogeneity. The two schemas are a filter strategy. Finally, to validate this, we consider the case study AVIRIS HSI 92AV3C. Keywords: Hyperspectrale images; classification; features selection; mutual information; homogeneity
Abstract:The Remote sensing provides a synoptic view of land by detecting the energy reflected from Earth's surface. The Hyperspectral images (HSI) use perfect sensors that extract more than a hundred of images, with more detailed information than using traditional Multispectral data. In this paper, we aim to study this aspect of communication in the case of passive reception. First, a brief overview of acquisition process and treatment of Hyperspectral images is provided. Then, we explain representation spaces and the various analysis methods of these images. Furthermore, the factors influencing this analysis are investigated and some applications, in this area, are presented. Finally, we explain the relationship between Hyperspectral images and Datamining and we outline the open issues related to this area. So we consider the case study: HSI AVIRIS 92AV3C. This study serves as map of route for integrating classification methods in the higher dimensionality data. Keywords-component: Hyperspectral images, Passive Sensing,Classification, Data mining.