Abstract:Fixing energy leakage caused by different anomalies can result in significant energy savings and extended appliance life. Further, it assists grid operators in scheduling their resources to meet the actual needs of end users, while helping end users reduce their energy costs. In this paper, we analyze the patterns pertaining to the power consumption of dishwashers used in two houses of the REFIT dataset. Then two autoencoder (AEs) with 1D-CNN and TCN as backbones are trained to differentiate the normal patterns from the abnormal ones. Our results indicate that TCN outperforms CNN1D in detecting anomalies in energy consumption. Finally, the data from the Fridge_Freezer and the Freezer of house No. 3 in REFIT is also used to evaluate our approach.
Abstract:creating automated processes in different areas of medical science with the application of engineering tools is a highly growing field over recent decades. In this context, many medical image processing and analyzing researchers use worthwhile methods in artificial intelligence, which can reduce necessary human power while increases accuracy of results. Among various medical images, blood microscopic images play a vital role in heart failure diagnosis, e.g., blood cancers. The prominent component in blood cancer diagnosis is white blood cells (WBCs) which due to its general characteristics in microscopic images sometimes make difficulties in recognition and classification tasks such as non-uniform colors/illuminances, different shapes, sizes, and textures. Moreover, overlapped WBCs in bone marrow images and neighboring to red blood cells are identified as reasons for errors in the classification task. In this paper, we have endeavored to segment various parts in medical images via Na\"ive Bayes clustering method and in next stage via TSLDA classifier, which is supplied by features acquired from covariance descriptor results in the accuracy of 98.02%. It seems that this result is delightful in WBCs recognition.