Abstract:In recent years, the field of medicine has been increasingly adopting artificial intelligence (AI) technologies to provide faster and more accurate disease detection, prediction, and assessment. In this study, we propose an interpretable AI approach to diagnose patients with neurofibromatosis using blood tests and pathogenic variables. We evaluated the proposed method using a dataset from the AACR GENIE project and compared its performance with modern approaches. Our proposed approach outperformed existing models with 99.86% accuracy. We also conducted NF1 and interpretable AI tests to validate our approach. Our work provides an explainable approach model using logistic regression and explanatory stimulus as well as a black-box model. The explainable models help to explain the predictions of black-box models while the glass-box models provide information about the best-fit features. Overall, our study presents an interpretable AI approach for diagnosing patients with neurofibromatosis and demonstrates the potential of AI in the medical field.
Abstract:We present LTC-SE, an improved version of the Liquid Time-Constant (LTC) neural network algorithm originally proposed by Hasani et al. in 2021. This algorithm unifies the Leaky-Integrate-and-Fire (LIF) spiking neural network model with Continuous-Time Recurrent Neural Networks (CTRNNs), Neural Ordinary Differential Equations (NODEs), and bespoke Gated Recurrent Units (GRUs). The enhancements in LTC-SE focus on augmenting flexibility, compatibility, and code organization, targeting the unique constraints of embedded systems with limited computational resources and strict performance requirements. The updated code serves as a consolidated class library compatible with TensorFlow 2.x, offering comprehensive configuration options for LTCCell, CTRNN, NODE, and CTGRU classes. We evaluate LTC-SE against its predecessors, showcasing the advantages of our optimizations in user experience, Keras function compatibility, and code clarity. These refinements expand the applicability of liquid neural networks in diverse machine learning tasks, such as robotics, causality analysis, and time-series prediction, and build on the foundational work of Hasani et al.