Abstract:We propose a method to explore the flavor structure of leptons using diffusion models, which are known as one of generative artificial intelligence (generative AI). We consider a simple extension of the Standard Model with the type I seesaw mechanism and train a neural network to generate the neutrino mass matrix. By utilizing transfer learning, the diffusion model generates 104 solutions that are consistent with the neutrino mass squared differences and the leptonic mixing angles. The distributions of the CP phases and the sums of neutrino masses, which are not included in the conditional labels but are calculated from the solutions, exhibit non-trivial tendencies. In addition, the effective mass in neutrinoless double beta decay is concentrated near the boundaries of the existing confidence intervals, allowing us to verify the obtained solutions through future experiments. An inverse approach using the diffusion model is expected to facilitate the experimental verification of flavor models from a perspective distinct from conventional analytical methods.
Abstract:We propose a reinforcement learning-based search strategy to explore new physics beyond the Standard Model. The reinforcement learning, which is one of machine learning methods, is a powerful approach to find model parameters with phenomenological constraints. As a concrete example, we focus on a minimal axion model with a global $U(1)$ flavor symmetry. Agents of the learning succeed in finding $U(1)$ charge assignments of quarks and leptons solving the flavor and cosmological puzzles in the Standard Model, and find more than 150 realistic solutions for the quark sector taking renormalization effects into account. For the solutions found by the reinforcement learning-based analysis, we discuss the sensitivity of future experiments for the detection of an axion which is a Nambu-Goldstone boson of the spontaneously broken $U(1)$. We also examine how fast the reinforcement learning-based searching method finds the best discrete parameters in comparison with conventional optimization methods. In conclusion, the efficient parameter search based on the reinforcement learning-based strategy enables us to perform a statistical analysis of the vast parameter space associated with the axion model from flavor.
Abstract:We propose a method to explore the flavor structure of quarks and leptons with reinforcement learning. As a concrete model, we utilize a basic policy-based algorithm for models with $U(1)$ flavor symmetry. By training neural networks on the $U(1)$ charges of quarks and leptons, the agent finds 21 models to be consistent with experimentally measured masses and mixing angles of quarks and leptons. In particular, an intrinsic value of normal ordering tends to be larger than that of inverted ordering, and the normal ordering is well fitted with the current experimental data in contrast to the inverted ordering. A specific value of effective mass for the neutrinoless double beta decay and a sizable leptonic CP violation induced by an angular component of flavon field are predicted by autonomous behavior of the agent.