Abstract:After the revelation that neural networks tend to produce overconfident predictions, the problem of calibration, which aims to align confidence with accuracy to enhance the reliability of predictions, has gained significant importance. Several solutions based on calibration maps have been proposed to address the problem of recalibrating a trained classifier using additional datasets. In this paper, we offer an algorithm that transforms the weights of the last layer of the classifier, distinct from the calibration-map-based approach. We concentrate on the geometry of the final linear layer, specifically its angular aspect, and adjust the weights of the corresponding layer. We name the method Tilt and Average(\textsc{Tna}), and validate the calibration effect empirically and theoretically. Through this, we demonstrate that our approach, in addition to the existing calibration-map-based techniques, can yield improved calibration performance. Code available : https://github.com/GYYYYYUUUUU/TNA_Angular_Scaling.
Abstract:From a service perspective, Multi-Source Domain Adaptation (MSDA) is a promising scenario to adapt a deployed model to a client's dataset. It can provide adaptation without a target label and support the case where a source dataset is constructed from multiple domains. However, it is impractical, wherein its training heavily relies on prior domain information of the multi-source dataset -- how many domains exist and the domain label of each data sample. Moreover, MSDA requires both source and target datasets simultaneously (physically), causing storage limitations on the client device or data privacy issues by transferring client data to a server. For a more practical scenario of model adaptation from a service provider's point of view, we relax these constraints and present a novel problem scenario of Three-Free Domain Adaptation, namely TFDA, where 1) target labels, 2) source dataset, and mostly 3) source domain information (domain labels + the number of domains) are unavailable. Under the problem scenario, we propose a practical adaptation framework called FREEDOM. It leverages the power of the generative model, disentangling data into class and style aspects, where the style is defined as the class-independent information from the source data and designed with a nonparametric Bayesian approach. In the adaptation stage, FREEDOM aims to match the source class distribution with the target's under the philosophy that class distribution is consistent even if the style is different; after then, only part of the classification model is deployed as a personalized network. As a result, FREEDOM achieves state-of-the-art or comparable performance even without domain information, with reduced final model size on the target side, independent of the number of source domains.