Abstract:We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications.
Abstract:Large Language Models (LLMs) have become a key element of modern artificial intelligence, demonstrating the ability to address a wide range of language processing tasks at unprecedented levels of accuracy without the need of collecting problem-specific data. However, these versatile models face a significant challenge: both their training and inference processes require substantial computational resources, time, and memory. Consequently, optimizing this kind of models to minimize these requirements is crucial. In this article, we demonstrate that, with minimal resources and in a remarkably short time, it is possible to enhance a state-of-the-art model, specifically for a given language task, without compromising its overall capabilities using a relatively small pretrained LLM as a basis. Specifically, we present our use case, RigoChat 2, illustrating how LLMs can be adapted to achieve superior results in Spanish-language tasks.
Abstract:This survey focuses in encoder Language Models for solving tasks in the clinical domain in the Spanish language. We review the contributions of 17 corpora focused mainly in clinical tasks, then list the most relevant Spanish Language Models and Spanish Clinical Language models. We perform a thorough comparison of these models by benchmarking them over a curated subset of the available corpora, in order to find the best-performing ones; in total more than 3000 models were fine-tuned for this study. All the tested corpora and the best models are made publically available in an accessible way, so that the results can be reproduced by independent teams or challenged in the future when new Spanish Clinical Language models are created.