Abstract:Few-shot action recognition (FSAR) aims to learn a model capable of identifying novel actions in videos using only a few examples. In assuming the base dataset seen during meta-training and novel dataset used for evaluation can come from different domains, cross-domain few-shot learning alleviates data collection and annotation costs required by methods with greater supervision and conventional (single-domain) few-shot methods. While this form of learning has been extensively studied for image classification, studies in cross-domain FSAR (CD-FSAR) are limited to proposing a model, rather than first understanding the cross-domain capabilities of existing models. To this end, we systematically evaluate existing state-of-the-art single-domain, transfer-based, and cross-domain FSAR methods on new cross-domain tasks with increasing difficulty, measured based on the domain shift between the base and novel set. Our empirical meta-analysis reveals a correlation between domain difference and downstream few-shot performance, and uncovers several important insights into which model aspects are effective for CD-FSAR and which need further development. Namely, we find that as the domain difference increases, the simple transfer-learning approach outperforms other methods by over 12 percentage points, and under these more challenging cross-domain settings, the specialised cross-domain model achieves the lowest performance. We also witness state-of-the-art single-domain FSAR models which use temporal alignment achieving similar or worse performance than earlier methods which do not, suggesting existing temporal alignment techniques fail to generalise on unseen domains. To the best of our knowledge, we are the first to systematically study the CD-FSAR problem in-depth. We hope the insights and challenges revealed in our study inspires and informs future work in these directions.