Abstract:The distributed denial-of-service (DDoS) attack stands out as a highly formidable cyber threat, representing an advanced form of the denial-of-service (DoS) attack. A DDoS attack involves multiple computers working together to overwhelm a system, making it unavailable. On the other hand, a DoS attack is a one-on-one attempt to make a system or website inaccessible. Thus, it is crucial to construct an effective model for identifying various DDoS incidents. Although extensive research has focused on binary detection models for DDoS identification, they face challenges to adapt evolving threats, necessitating frequent updates. Whereas multiclass detection models offer a comprehensive defense against diverse DDoS attacks, ensuring adaptability in the ever-changing cyber threat landscape. In this paper, we propose a Hybrid Model to strengthen network security by combining the featureextraction abilities of 1D Convolutional Neural Networks (CNNs) with the classification skills of Random Forest (RF) and Multi-layer Perceptron (MLP) classifiers. Using the CIC-DDoS2019 dataset, we perform multiclass classification of various DDoS attacks and conduct a comparative analysis of evaluation metrics for RF, MLP, and our proposed Hybrid Model. After analyzing the results, we draw meaningful conclusions and confirm the superiority of our Hybrid Model by performing thorough cross-validation. Additionally, we integrate our machine learning model with Snort, which provides a robust and adaptive solution for detecting and mitigating various DDoS attacks.
Abstract:Phishing URL detection is crucial in cybersecurity as malicious websites disguise themselves to steal sensitive infor mation. Traditional machine learning techniques struggle to per form well in complex real-world scenarios due to large datasets and intricate patterns. Motivated by quantum computing, this paper proposes using Variational Quantum Classifiers (VQC) to enhance phishing URL detection. We present PhishVQC, a quantum model that combines quantum feature maps and vari ational ansatzes such as RealAmplitude and EfficientSU2. The model is evaluated across two experimental setups with varying dataset sizes and feature map repetitions. PhishVQC achieves a maximum macro average F1-score of 0.89, showing a 22% improvement over prior studies. This highlights the potential of quantum machine learning to improve phishing detection accuracy. The study also notes computational challenges, with execution wall times increasing as dataset size grows.
Abstract:Smishing is a social engineering attack using SMS containing malicious content to deceive individuals into disclosing sensitive information or transferring money to cybercriminals. Smishing attacks have surged by 328%, posing a major threat to mobile users, with losses exceeding \$54.2 million in 2019. Despite its growing prevalence, the issue remains significantly under-addressed. This paper presents a novel hybrid machine learning model for detecting Bangla smishing texts, combining Bidirectional Encoder Representations from Transformers (BERT) with Convolutional Neural Networks (CNNs) for enhanced character-level analysis. Our model addresses multi-class classification by distinguishing between Normal, Promotional, and Smishing SMS. Unlike traditional binary classification methods, our approach integrates BERT's contextual embeddings with CNN's character-level features, improving detection accuracy. Enhanced by an attention mechanism, the model effectively prioritizes crucial text segments. Our model achieves 98.47% accuracy, outperforming traditional classifiers, with high precision and recall in Smishing detection, and strong performance across all categories.