Abstract:The widespread adoption of ML systems across critical domains like hiring, finance, and healthcare raises growing concerns about their potential for discriminatory decision-making based on protected attributes. While efforts to ensure fairness during development are crucial, they leave deployed ML systems vulnerable to potentially exhibiting discrimination during their operations. To address this gap, we propose a novel framework for on-the-fly tracking and correction of discrimination in deployed ML systems. Leveraging counterfactual explanations, the framework continuously monitors the predictions made by an ML system and flags discriminatory outcomes. When flagged, post-hoc explanations related to the original prediction and the counterfactual alternatives are presented to a human reviewer for real-time intervention. This human-in-the-loop approach empowers reviewers to accept or override the ML system decision, enabling fair and responsible ML operation under dynamic settings. While further work is needed for validation and refinement, this framework offers a promising avenue for mitigating discrimination and building trust in ML systems deployed in a wide range of domains.
Abstract:Artificial Intelligence (AI) has demonstrated remarkable capabilities in domains such as recruitment, finance, healthcare, and the judiciary. However, biases in AI systems raise ethical and societal concerns, emphasizing the need for effective fairness testing methods. This paper reviews current research on fairness testing, particularly its application through search-based testing. Our analysis highlights progress and identifies areas of improvement in addressing AI systems biases. Future research should focus on leveraging established search-based testing methodologies for fairness testing.
Abstract:Lithium-ion batteries are widely used in various applications, including portable electronic devices, electric vehicles, and renewable energy storage systems. Accurately estimating the remaining useful life of these batteries is crucial for ensuring their optimal performance, preventing unexpected failures, and reducing maintenance costs. In this paper, we present a comprehensive review of the existing approaches for estimating the remaining useful life of lithium-ion batteries, including data-driven methods, physics-based models, and hybrid approaches. We also propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries. Our approach utilizes various battery performance parameters, including voltage, current, and temperature, to train a predictive model that can accurately estimate the remaining useful life of the battery. We evaluate the performance of our approach on a dataset of lithium-ion battery cycles and compare it with other state-of-the-art methods. The results demonstrate the effectiveness of our proposed approach in accurately estimating the remaining useful life of lithium-ion batteries.