Abstract:The demands on robotic manipulation skills to perform challenging tasks have drastically increased in recent times. To perform these tasks with dexterity, robots require perception tools to understand the scene and extract useful information that transforms to robot control inputs. To this end, recent research has introduced various object pose estimation and grasp pose detection methods that yield precise results. Assembly pose estimation is a secondary yet highly desirable skill in robotic assembling as it requires more detailed information on object placement as compared to bin picking and pick-and-place tasks. However, it has been often overlooked in research due to the complexity of integration in an agile framework. To address this issue, we propose an assembly pose estimation method with RGB-D input and 3D CAD models of the associated objects. The framework consists of semantic segmentation of the scene and registering point clouds of local surfaces against target point clouds derived from CAD models to estimate 6D poses. We show that our method can deliver sufficient accuracy for assembling object assemblies using evaluation metrics and demonstrations. The source code and dataset for the work can be found at: https://github.com/KulunuOS/6DAPose
Abstract:Collaboration between human and robot requires effective modes of communication to assign robot tasks and coordinate activities. As communication can utilize different modalities, a multi-modal approach can be more expressive than single modal models alone. In this work we propose a co-speech gesture model that can assign robot tasks for human-robot collaboration. Human gestures and speech, detected by computer vision and speech recognition, can thus refer to objects in the scene and apply robot actions to them. We present an experimental evaluation of the multi-modal co-speech model with a real-world industrial use case. Results demonstrate that multi-modal communication is easy to achieve and can provide benefits for collaboration with respect to single modal tools.
Abstract:Deep learning requires large amounts of data, and a well-defined pipeline for labeling and augmentation. Current solutions support numerous computer vision tasks with dedicated annotation types and formats, such as bounding boxes, polygons, and key points. These annotations can be combined into a single data format to benefit approaches such as multi-task models. However, to our knowledge, no available labeling tool supports the export functionality for a combined benchmark format, and no augmentation library supports transformations for the combination of all. In this work, these functionalities are presented, with visual data annotation and augmentation to train a multi-task model (object detection, segmentation, and key point extraction). The tools are demonstrated in two robot perception use cases.