Abstract:This technical report summarizes the analysis and approach on the image-to-image translation task in the Multimodal Learning for Earth and Environment Challenge (MultiEarth 2022). In terms of strategy optimization, cloud classification is utilized to filter optical images with dense cloud coverage to aid the supervised learning alike approach. The commonly used pix2pix framework with a few optimizations is applied to build the model. A weighted combination of mean squared error and mean absolute error is incorporated in the loss function. As for evaluation, peak to signal ratio and structural similarity were both considered in our preliminary analysis. Lastly, our method achieved the second place with a final error score of 0.0412. The results indicate great potential towards SAR-to-optical translation in remote sensing tasks, specifically for the support of long-term environmental monitoring and protection.
Abstract:The spread of the Red Pal Weevil (RPW) has become an existential threat for palm trees around the world. In the Middle East, RPW is causing wide-spread damage to date palm Phoenix dactylifera L., having both agricultural impacts on the palm production and environmental impacts. Early detection of RPW is very challenging, especially at large scale. This research proposes a novel remote sensing approach to recognize and monitor red palm weevil in date palm trees, using a combination of vegetation indices, object detection and semantic segmentation techniques. The study area consists of date palm trees with three classes, including healthy palms, smallish palms and severely infected palms. This proposed method achieved a promising 0.947 F1 score on test data set. This work paves the way for deploying artificial intelligence approaches to monitor RPW in large-scale as well as provide guidance for practitioners.