Abstract:Residential location choices are traditionally modelled using factors related to accessibility and socioeconomic environments, neglecting the importance of local street-level conditions. Arguably, this neglect is due to data practices. Today, however, street-level images -- which are highly effective at encoding street-level conditions -- are widely available. Additionally, recent advances in discrete choice models incorporating computer vision capabilities offer opportunities to integrate street-level conditions into residential location choice analysis. This study leverages these developments to investigate the spatial distribution of utility derived from street-level conditions in residential location choices on a city-wide scale. In our case study of Rotterdam, the Netherlands, we find that the utility derived from street-level conditions varies significantly on a highly localised scale, with conditions rapidly changing even within neighbourhoods. Our results also reveal that the high real-estate prices in the city centre cannot be attributed to attractive street-level conditions. Furthermore, whereas the city centre is characterised by relatively unattractive residential street-level conditions, neighbourhoods in the southern part of the city -- often perceived as problematic -- exhibit surprisingly appealing street-level environments. The methodological contribution of this paper is that it advances the discrete choice models incorporating computer vision capabilities by introducing a semantic regularisation layer to the model. Thereby, it adds explainability and eliminates the need for a separate pipeline to extract information from images, streamlining the analysis. As such, this paper's findings and methodological advancements pave the way for further studies to explore integrating street-level conditions in urban planning.
Abstract:Visual imagery is indispensable to many multi-attribute decision situations. Examples of such decision situations in travel behaviour research include residential location choices, vehicle choices, tourist destination choices, and various safety-related choices. However, current discrete choice models cannot handle image data and thus cannot incorporate information embedded in images into their representations of choice behaviour. This gap between discrete choice models' capabilities and the real-world behaviour it seeks to model leads to incomplete and, possibly, misleading outcomes. To solve this gap, this study proposes "Computer Vision-enriched Discrete Choice Models" (CV-DCMs). CV-DCMs can handle choice tasks involving numeric attributes and images by integrating computer vision and traditional discrete choice models. Moreover, because CV-DCMs are grounded in random utility maximisation principles, they maintain the solid behavioural foundation of traditional discrete choice models. We demonstrate the proposed CV-DCM by applying it to data obtained through a novel stated choice experiment involving residential location choices. In this experiment, respondents faced choice tasks with trade-offs between commute time, monthly housing cost and street-level conditions, presented using images. As such, this research contributes to the growing body of literature in the travel behaviour field that seeks to integrate discrete choice modelling and machine learning.