Abstract:In this paper, an unmanned aerial vehicle (UAVs)-assisted visible light communication (VLC) has been considered which has two tiers: UAV-to-centroid and device-to-device (D2D). In the UAV-to-centroid tier, each UAV can simultaneously provide communications and illumination for the centroids of the ground users over VLC links. In the D2D tier, the centroids retransmit received data from UAV over D2D links to the cluster members. For network, the optimization problem of joint user association and deployment location of UAVs is formulated to maximize the received data, satisfy illumination constraint, and the user cluster size. An iterative algorithm is first proposed to transform the optimization problem into a series of two interdependent sub problems. Following the smallest enclosing disk theorem, a random incremental construction method is designed to find the optimal UAV locations. Then, inspired by unsupervised learning method, a clustering algorithm to find a suboptimal user association is proposed. Our simulation results show that the proposed scheme on average guarantees the users brightness 0.77 lux more than their threshold requirements. Moreover, the received bitrate plus number of D2D connected users under our proposed method is 50.69% more than the scenario in which we have RF Link instead of VLC link and do not optimize UAV location.