Abstract:An adaptive control approach for a three-phase grid-interfaced solar photovoltaic system based on the new Neuro-Fuzzy Inference System with Rain Optimization Algorithm (ANROA) methodology is proposed and discussed in this manuscript. This method incorporates an Adaptive Neuro-fuzzy Inference System (ANFIS) with a Rain Optimization Algorithm (ROA). The ANFIS controller has excellent maximum tracking capability because it includes features of both neural and fuzzy techniques. The ROA technique is in charge of controlling the voltage source converter switching. Avoiding power quality problems including voltage fluctuations, harmonics, and flickers as well as unbalanced loads and reactive power usage is the major goal. Besides, the proposed method performs at zero voltage regulation and unity power factor modes. The suggested control approach has been modeled and simulated, and its performance has been assessed using existing alternative methods. A statistical analysis of proposed and existing techniques has been also presented and discussed. The results of the simulations demonstrate that, when compared to alternative approaches, the suggested strategy may properly and effectively identify the best global solutions. Furthermore, the system's robustness has been studied by using MATLAB/SIMULINK environment and experimentally by Field Programmable Gate Arrays Controller (FPGA)-based Hardware-in-Loop (HLL).
Abstract:Wind power generated by wind has non-schedule nature due to stochastic nature of meteorological variable. Hence energy business and control of wind power generation requires prediction of wind speed (WS) from few seconds to different time steps in advance. To deal with prediction shortcomings, various WS prediction methods have been used. Predictive data mining offers variety of methods for WS predictions where artificial neural network (ANN) is one of the reliable and accurate methods. It is observed from the result of this study that ANN gives better accuracy in comparison conventional model. The accuracy of WS prediction models is found to be dependent on input parameters and architecture type algorithms utilized. So the selection of most relevant input parameters is important research area in WS predicton field. The objective of the paper is twofold: first extensive review of ANN for wind power and WS prediction is carried out. Discussion and analysis of feature selection using Relief Algorithm (RA) in WS prediction are considered for different Indian sites. RA identify atmospheric pressure, solar radiation and relative humidity are relevant input variables. Based on relevant input variables Cascade ANN model is developed and prediction accuracy is evaluated. It is found that root mean square error (RMSE) for comparison between predicted and measured WS for training and testing wind speed are found to be 1.44 m/s and 1.49 m/s respectively. The developed cascade ANN model can be used to predict wind speed for sites where there are not WS measuring instruments are installed in India.