Abstract:In a practical molecular communication scenario such as monitoring air pollutants released from an unknown source, it is essential to estimate the location of the molecular transmitter (TX). This paper presents a novel Sensor Network-based Localization Algorithm (SNCLA) for passive transmission by using a novel experimental platform which mainly comprises a clustered sensor network (SN) with $24$ sensor nodes and evaporating ethanol molecules as the passive TX. In SNCLA, a Gaussian plume model is employed to derive the location estimator. The parameters such as transmitted mass, wind velocity, detection time, and actual concentration are calculated or estimated from the measured signals via the SN to be employed as the input for the location estimator. The numerical results show that the performance of SNCLA is better for stronger winds in the medium. Our findings show that evaporated molecules do not propagate homogeneously through the SN due to the presence of the wind. In addition, our statistical analysis based on the measured experimental data shows that the sensed signals by the SN have a log-normal distribution, while the additive noise follows a Student's t-distribution in contrast to the Gaussian assumption in the literature.
Abstract:Airborne pathogen transmission mechanisms play a key role in the spread of infectious diseases such as COVID-19. In this work, we propose a computational fluid dynamics (CFD) approach to model and statistically characterize airborne pathogen transmission via pathogen-laden particles in turbulent channels from a molecular communication viewpoint. To this end, turbulent flows induced by coughing and the turbulent dispersion of droplets and aerosols are modeled by using the Reynolds-averaged Navier-Stokes equations coupled with the realizable $k-\epsilon$ model and the discrete random walk model, respectively. Via simulations realized by a CFD simulator, statistical data for the number of received particles are obtained. These data are post-processed to obtain the statistical characterization of the turbulent effect in the reception and to derive the probability of infection. Our results reveal that the turbulence has an irregular effect on the probability of infection, which shows itself by the multi-modal distribution as a weighted sum of normal and Weibull distributions. Furthermore, it is shown that the turbulent MC channel is characterized via multi-modal, i.e., sum of weighted normal distributions, or stable distributions, depending on the air velocity.
Abstract:Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances. In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. The presented work shows how the biofilm growth and its disruption can be modeled realistically via the premature QS activation among bacteria.
Abstract:Bacteria generally live in complicated structures called biofilms, consisting of communicating bacterial colonies and extracellular polymeric substance (EPS). Since biofilms are related to detrimental effects such as infection or antibiotic resistance in different settings, it is essential to model their formation. In this paper, a stochastic model is proposed for biofilm formation, using bacterial quorum sensing (QS). In this model, the biological processes in the biofilm formation are modeled as a chemical reaction network which includes bacterial reproduction, productions of autoinducer and EPS, and their diffusion. The modified explicit tau-leap simulation algorithm is adapted based on the two-state QS mechanism. Our approach is validated by using the experimental results of $\textit{Pseudomonas putida}$ IsoF bacteria for autoinducer and bacteria concentration. It is also shown that the percentage of EPS in the biofilm increases significantly after the state change in QS, while it decreases before QS is activated. The presented work shows how the biofilm growth can be modeled realistically by using the QS mechanism in stochastic simulations of chemical reactions.