Abstract:Hyperspectral image classification (HSIC) is a challenging task due to high spectral dimensionality, complex spectral-spatial correlations, and limited labeled training samples. Although transformer-based models have shown strong potential for HSIC, existing approaches often struggle to achieve sufficient spectral discriminability while maintaining computational efficiency. To address these limitations, we propose a novel DSXFormer, a novel dual-pooling spectral squeeze-expansion transformer with Dynamic Context Attention for HSIC. The proposed DSXFormer introduces a Dual-Pooling Spectral Squeeze-Expansion (DSX) block, which exploits complementary global average and max pooling to adaptively recalibrate spectral feature channels, thereby enhancing spectral discriminability and inter-band dependency modeling. In addition, DSXFormer incorporates a Dynamic Context Attention (DCA) mechanism within a window-based transformer architecture to dynamically capture local spectral-spatial relationships while significantly reducing computational overhead. The joint integration of spectral dual-pooling squeeze-expansion and DCA enables DSXFormer to achieve an effective balance between spectral emphasis and spatial contextual representation. Furthermore, patch extraction, embedding, and patch merging strategies are employed to facilitate efficient multi-scale feature learning. Extensive experiments conducted on four widely used hyperspectral benchmark datasets, including Salinas (SA), Indian Pines (IP), Pavia University (PU), and Kennedy Space Center (KSC), demonstrate that DSXFormer consistently outperforms state-of-the-art methods, achieving classification accuracies of 99.95%, 98.91%, 99.85%, and 98.52%, respectively.
Abstract:Congenital heart disease is among the most common fetal abnormalities and birth defects. Despite identifying numerous risk factors influencing its onset, a comprehensive understanding of its genesis and management across diverse populations remains limited. Recent advancements in machine learning have demonstrated the potential for leveraging patient data to enable early congenital heart disease detection. Over the past seven years, researchers have proposed various data-driven and algorithmic solutions to address this challenge. This paper presents a systematic review of congential heart disease recognition using machine learning, conducting a meta-analysis of 432 references from leading journals published between 2018 and 2024. A detailed investigation of 74 scholarly works highlights key factors, including databases, algorithms, applications, and solutions. Additionally, the survey outlines reported datasets used by machine learning experts for congenital heart disease recognition. Using a systematic literature review methodology, this study identifies critical challenges and opportunities in applying machine learning to congenital heart disease.