Abstract:This thesis is part of a CIFRE agreement between the company Othello and the LIASD laboratory. The objective is to develop an artificial intelligence system that can detect real-time dangers in a video stream. To achieve this, a novel approach combining temporal and spatial analysis has been proposed. Several avenues have been explored to improve anomaly detection by integrating object detection, human pose detection, and motion analysis. For result interpretability, techniques commonly used for image analysis, such as activation and saliency maps, have been extended to videos, and an original method has been proposed. The proposed architecture performs binary or multiclass classification depending on whether an alert or the cause needs to be identified. Numerous neural networkmodels have been tested, and three of them have been selected. You Only Looks Once (YOLO) has been used for spatial analysis, a Convolutional Recurrent Neuronal Network (CRNN) composed of VGG19 and a Gated Recurrent Unit (GRU) for temporal analysis, and a multi-layer perceptron for classification. These models handle different types of data and can be combined in parallel or in series. Although the parallel mode is faster, the serial mode is generally more reliable. For training these models, supervised learning was chosen, and two proprietary datasets were created. The first dataset focuses on objects that may play a potential role in anomalies, while the second consists of videos containing anomalies or non-anomalies. This approach allows for the processing of both continuous video streams and finite videos, providing greater flexibility in detection.
Abstract:Nowadays, neural networks are commonly used to solve various problems. Unfortunately, despite their effectiveness, they are often perceived as black boxes capable of providing answers without explaining their decisions, which raises numerous ethical and legal concerns. Fortunately, the field of explainability helps users understand these results. This aspect of machine learning allows users to grasp the decision-making process of a model and verify the relevance of its outcomes. In this article, we focus on the learning process carried out by a ``time distributed`` convRNN, which performs anomaly detection from video data.
Abstract:Nowadays, many places use security cameras. Unfortunately, when an incident occurs, these technologies are used to show past events. So it can be considered as a deterrence tool than a detection tool. In this article, we will propose a deep learning approach trying to solve this problematic. This approach uses convolutional models (CNN) to extract relevant characteristics linked to the video images, theses characteristics will form times series to be analyzed by LSTM / GRU models.
Abstract:We propose a new architecture for real-time anomaly detection in video data, inspired by human behavior by combining spatial and temporal analyses. This approach uses two distinct models: for temporal analysis, a recurrent convolutional network (CNN + RNN) is employed, associating VGG19 and a GRU to process video sequences. Regarding spatial analysis, it is performed using YOLOv7 to analyze individual images. These two analyses can be carried out either in parallel, with a final prediction that combines the results of both analyses, or in series, where the spatial analysis enriches the data before the temporal analysis. In this article, we will compare these two architectural configurations with each other, to evaluate the effectiveness of our hybrid approach in video anomaly detection.