Abstract:Preserving the privacy and security of big data in the context of cloud computing, while maintaining a certain level of efficiency of its processing remains to be a subject, open for improvement. One of the most popular applications epitomizing said concerns is found to be useful in genome analysis. This work proposes a secure multi-label tumor classification method using homomorphic encryption, whereby two different machine learning algorithms, SVM and XGBoost, are used to classify the encrypted genome data of different tumor types.
Abstract:The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains.