Abstract:A data-driven model (DDM) suitable for regional weather forecasting applications is presented. The model extends the Artificial Intelligence Forecasting System by introducing a stretched-grid architecture that dedicates higher resolution over a regional area of interest and maintains a lower resolution elsewhere on the globe. The model is based on graph neural networks, which naturally affords arbitrary multi-resolution grid configurations. The model is applied to short-range weather prediction for the Nordics, producing forecasts at 2.5 km spatial and 6 h temporal resolution. The model is pre-trained on 43 years of global ERA5 data at 31 km resolution and is further refined using 3.3 years of 2.5 km resolution operational analyses from the MetCoOp Ensemble Prediction System (MEPS). The performance of the model is evaluated using surface observations from measurement stations across Norway and is compared to short-range weather forecasts from MEPS. The DDM outperforms both the control run and the ensemble mean of MEPS for 2 m temperature. The model also produces competitive precipitation and wind speed forecasts, but is shown to underestimate extreme events.
Abstract:This Letter introduces an approach for precisely designing surface friction properties using a conditional generative machine learning model, specifically a diffusion denoising probabilistic model (DDPM). We created a dataset of synthetic surfaces with frictional properties determined by molecular dynamics simulations, which trained the DDPM to predict surface structures from desired frictional outcomes. Unlike traditional trial-and-error and numerical optimization methods, our approach directly yields surface designs meeting specified frictional criteria with high accuracy and efficiency. This advancement in material surface engineering demonstrates the potential of machine learning in reducing the iterative nature of surface design processes. Our findings not only provide a new pathway for precise surface property tailoring but also suggest broader applications in material science where surface characteristics are critical.