Abstract:We introduce for continual learning Autodiff Quadratic Consolidation (AQC), which approximates the previous loss function with a quadratic function, and Neural Consolidation (NC), which approximates the previous loss function with a neural network. Although they are not scalable to large neural networks, they can be used with a fixed pre-trained feature extractor. We empirically study these methods in class-incremental learning, for which regularization-based methods produce unsatisfactory results, unless combined with replay. We find that for small datasets, quadratic approximation of the previous loss function leads to poor results, even with full Hessian computation, and NC could significantly improve the predictive performance, while for large datasets, when used with a fixed pre-trained feature extractor, AQC provides superior predictive performance. We also find that using tanh-output features can improve the predictive performance of AQC. In particular, in class-incremental Split MNIST, when a Convolutional Neural Network (CNN) with tanh-output features is pre-trained on EMNIST Letters and used as a fixed pre-trained feature extractor, AQC can achieve predictive performance comparable to joint training.
Abstract:With the increasing use of deep learning on data collected by non-perfect sensors and in non-perfect environments, the robustness of deep learning systems has become an important issue. A common approach for obtaining robustness to noise has been to train deep learning systems with data augmented with Gaussian noise. In this work, we challenge the common choice of Gaussian noise and explore the possibility of stronger robustness for non-Gaussian impulsive noise, specifically alpha-stable noise. Justified by the Generalized Central Limit Theorem and evidenced by observations in various application areas, alpha-stable noise is widely present in nature. By comparing the testing accuracy of models trained with Gaussian noise and alpha-stable noise on data corrupted by different noise, we find that training with alpha-stable noise is more effective than Gaussian noise, especially when the dataset is corrupted by impulsive noise, thus improving the robustness of the model. The generality of this conclusion is validated through experiments conducted on various deep learning models with image and time series datasets, and other benchmark corrupted datasets. Consequently, we propose a novel data augmentation method that replaces Gaussian noise, which is typically added to the training data, with alpha-stable noise.