Abstract:The increasing prevalence of online misinformation has heightened the demand for automated fact-checking solutions. Large Language Models (LLMs) have emerged as potential tools for assisting in this task, but their effectiveness remains uncertain. This study evaluates the fact-checking capabilities of various open-source LLMs, focusing on their ability to assess claims with different levels of contextual information. We conduct three key experiments: (1) evaluating whether LLMs can identify the semantic relationship between a claim and a fact-checking article, (2) assessing models' accuracy in verifying claims when given a related fact-checking article, and (3) testing LLMs' fact-checking abilities when leveraging data from external knowledge sources such as Google and Wikipedia. Our results indicate that LLMs perform well in identifying claim-article connections and verifying fact-checked stories but struggle with confirming factual news, where they are outperformed by traditional fine-tuned models such as RoBERTa. Additionally, the introduction of external knowledge does not significantly enhance LLMs' performance, calling for more tailored approaches. Our findings highlight both the potential and limitations of LLMs in automated fact-checking, emphasizing the need for further refinements before they can reliably replace human fact-checkers.