Abstract:Procedural Content Generation (PCG) is the algorithmic generation of content, often applied to games. PCG and PCG via Machine Learning (PCGML) have appeared in published games. However, it can prove difficult to apply these approaches in the early stages of an in-development game. PCG requires expertise in representing designer notions of quality in rules or functions, and PCGML typically requires significant training data, which may not be available early in development. In this paper, we introduce Tree-based Reconstructive Partitioning (TRP), a novel PCGML approach aimed to address this problem. Our results, across two domains, demonstrate that TRP produces levels that are more playable and coherent, and that the approach is more generalizable with less training data. We consider TRP to be a promising new approach that can afford the introduction of PCGML into the early stages of game development without requiring human expertise or significant training data.
Abstract:In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.
Abstract:To best assist human designers with different styles, Machine Learning (ML) systems need to be able to adapt to them. However, there has been relatively little prior work on how and when to best adapt an ML system to a co-designer. In this paper we present threshold designer adaptation: a novel method for adapting a creative ML model to an individual designer. We evaluate our approach with a human subject study using a co-creative rhythm game design tool. We find that designers prefer our proposed method and produce higher quality content in comparison to an existing baseline.
Abstract:Generating rhythm game charts from songs via machine learning has been a problem of increasing interest in recent years. However, all existing systems struggle to replicate human-like patterning: the placement of game objects in relation to each other to form congruent patterns based on events in the song. Patterning is a key identifier of high quality rhythm game content, seen as a necessary component in human rankings. We establish a new approach for chart generation that produces charts with more congruent, human-like patterning than seen in prior work.