Abstract:Finding and localizing the conceptual changes in two scenes in terms of the presence or removal of objects in two images belonging to the same scene at different times in special care applications is of great significance. This is mainly due to the fact that addition or removal of important objects for some environments can be harmful. As a result, there is a need to design a program that locates these differences using machine vision. The most important challenge of this problem is the change in lighting conditions and the presence of shadows in the scene. Therefore, the proposed methods must be resistant to these challenges. In this article, a method based on deep convolutional neural networks using transfer learning is introduced, which is trained with an intelligent data synthesis process. The results of this method are tested and presented on the dataset provided for this purpose. It is shown that the presented method is more efficient than other methods and can be used in a variety of real industrial environments.
Abstract:Finding the conceptual difference between the two images in an industrial environment has been especially important for HSE purposes and there is still no reliable and conformable method to find the major differences to alert the related controllers. Due to the abundance and variety of objects in different environments, the use of supervised learning methods in this field is facing a major problem. Due to the sharp and even slight change in lighting conditions in the two scenes, it is not possible to naively subtract the two images in order to find these differences. The goal of this paper is to find and localize the conceptual differences of two frames of one scene but in two different times and classify the differences to addition, reduction and change in the field. In this paper, we demonstrate a comprehensive solution for this application by presenting the deep learning method and using transfer learning and structural modification of the error function, as well as a process for adding and synthesizing data. An appropriate data set was provided and labeled, and the model results were evaluated on this data set and the possibility of using it in real and industrial applications was explained.