Abstract:Recent LLM-based agent frameworks have demonstrated impressive capabilities in task delegation and workflow orchestration, but face significant challenges in maintaining context awareness and ensuring planning consistency. This paper presents SagaLLM, a structured multi-agent framework that addresses four fundamental limitations in current LLM approaches: inadequate self-validation, context narrowing, lacking transaction properties, and insufficient inter-agent coordination. By implementing specialized context management agents and validation protocols, SagaLLM preserves critical constraints and state information throughout complex planning processes, enabling robust and consistent decision-making even during disruptions. We evaluate our approach using selected problems from the REALM benchmark, focusing on sequential and reactive planning scenarios that challenge both context retention and adaptive reasoning. Our experiments with state-of-the-art LLMs, Claude 3.7, DeepSeek R1, GPT-4o, and GPT-o1, demonstrate that while these models exhibit impressive reasoning capabilities, they struggle with maintaining global constraint awareness during complex planning tasks, particularly when adapting to unexpected changes. In contrast, the distributed cognitive architecture of SagaLLM shows significant improvements in planning consistency, constraint enforcement, and adaptation to disruptions in various scenarios.
Abstract:This benchmark suite provides a comprehensive evaluation framework for assessing both individual LLMs and multi-agent systems in real-world planning scenarios. The suite encompasses eleven designed problems that progress from basic to highly complex, incorporating key aspects such as multi-agent coordination, inter-agent dependencies, and dynamic environmental disruptions. Each problem can be scaled along three dimensions: the number of parallel planning threads, the complexity of inter-dependencies, and the frequency of unexpected disruptions requiring real-time adaptation. The benchmark includes detailed specifications, evaluation metrics, and baseline implementations using contemporary frameworks like LangGraph, enabling rigorous testing of both single-agent and multi-agent planning capabilities. Through standardized evaluation criteria and scalable complexity, this benchmark aims to drive progress in developing more robust and adaptable AI planning systems for real-world applications.
Abstract:Artificial intelligence requires deliberate reasoning, temporal awareness, and effective constraint management, capabilities traditional LLMs often lack due to their reliance on pattern matching, limited self-verification, and inconsistent constraint handling. We introduce Multi-Agent Collaborative Intelligence (MACI), a framework comprising three key components: 1) a meta-planner (MP) that identifies, formulates, and refines all roles and constraints of a task (e.g., wedding planning) while generating a dependency graph, with common-sense augmentation to ensure realistic and practical constraints; 2) a collection of agents to facilitate planning and address task-specific requirements; and 3) a run-time monitor that manages plan adjustments as needed. By decoupling planning from validation, maintaining minimal agent context, and integrating common-sense reasoning, MACI overcomes the aforementioned limitations and demonstrates robust performance in two scheduling problems.
Abstract:This booklet, "Unlocking the Wisdom of Large Language Models," serves as an introduction to the comprehensive work "The Path to Artificial General Intelligence." Through a series of nine aphorisms, we distill key insights and principles that underpin the larger exploration of AI's future through adversarial LLM dialogue. We propose this approach as a potential path to realizing artificial general intelligence (AGI). This booklet also includes the titles, abstracts, and introductions of the chapters in the main book, and presents the first two chapters in their entirety.
Abstract:This paper introduces EVINCE (Entropy and Variation IN Conditional Exchanges), a dialogue framework advancing Artificial General Intelligence (AGI) by enhancing versatility, adaptivity, and reasoning in large language models (LLMs). Leveraging adversarial debate and a novel dual entropy theory, EVINCE improves prediction accuracy, robustness, and stability in LLMs by integrating statistical modeling, information theory, and machine learning to balance diverse perspective exploration with strong prior exploitation. The framework's effectiveness is demonstrated through consistent convergence of information-theoretic metrics, particularly improved mutual information, fostering productive LLM collaboration. We apply EVINCE to healthcare, showing improved disease diagnosis, and discuss its broader implications for decision-making across domains. This work provides theoretical foundations and empirical validation for EVINCE, paving the way for advancements in LLM collaboration and AGI development.
Abstract:Biases inherent in human endeavors pose significant challenges for machine learning, particularly in supervised learning that relies on potentially biased "ground truth" data. This reliance, coupled with models' tendency to generalize based on statistical maximal likelihood, can propagate and amplify biases, exacerbating societal issues. To address this, our study proposes a reflective methodology utilizing multiple Large Language Models (LLMs) engaged in a dynamic dialogue to uncover diverse perspectives. By leveraging conditional statistics, information theory, and divergence metrics, this novel approach fosters context-dependent linguistic behaviors, promoting unbiased outputs. Furthermore, it enables measurable progress tracking and explainable remediation actions to address identified biases.
Abstract:This research develops advanced methodologies for Large Language Models (LLMs) to better manage linguistic behaviors related to emotions and ethics. We introduce DIKE, an adversarial framework that enhances the LLMs' ability to internalize and reflect global human values, adapting to varied cultural contexts to promote transparency and trust among users. The methodology involves detailed modeling of emotions, classification of linguistic behaviors, and implementation of ethical guardrails. Our innovative approaches include mapping emotions and behaviors using self-supervised learning techniques, refining these guardrails through adversarial reviews, and systematically adjusting outputs to ensure ethical alignment. This framework establishes a robust foundation for AI systems to operate with ethical integrity and cultural sensitivity, paving the way for more responsible and context-aware AI interactions.
Abstract:This paper explores the integration of human-like emotions and ethical considerations into Large Language Models (LLMs). We first model eight fundamental human emotions, presented as opposing pairs, and employ collaborative LLMs to reinterpret and express these emotions across a spectrum of intensity. Our focus extends to embedding a latent ethical dimension within LLMs, guided by a novel self-supervised learning algorithm with human feedback (SSHF). This approach enables LLMs to perform self-evaluations and adjustments concerning ethical guidelines, enhancing their capability to generate content that is not only emotionally resonant but also ethically aligned. The methodologies and case studies presented herein illustrate the potential of LLMs to transcend mere text and image generation, venturing into the realms of empathetic interaction and principled decision-making, thereby setting a new precedent in the development of emotionally aware and ethically conscious AI systems.
Abstract:The success of deep learning is largely due to the availability of large amounts of training data that cover a wide range of examples of a particular concept or meaning. In the field of medicine, having a diverse set of training data on a particular disease can lead to the development of a model that is able to accurately predict the disease. However, despite the potential benefits, there have not been significant advances in image-based diagnosis due to a lack of high-quality annotated data. This article highlights the importance of using a data-centric approach to improve the quality of data representations, particularly in cases where the available data is limited. To address this "small-data" issue, we discuss four methods for generating and aggregating training data: data augmentation, transfer learning, federated learning, and GANs (generative adversarial networks). We also propose the use of knowledge-guided GANs to incorporate domain knowledge in the training data generation process. With the recent progress in large pre-trained language models, we believe it is possible to acquire high-quality knowledge that can be used to improve the effectiveness of knowledge-guided generative methods.
Abstract:Data augmentation is an effective technique to improve the generalization of deep neural networks. Recently, AutoAugment proposed a well-designed search space and a search algorithm that automatically finds augmentation policies in a data-driven manner. However, AutoAugment is computationally intensive. In this paper, we propose an efficient gradient-based search algorithm, called Hypernetwork-Based Augmentation (HBA), which simultaneously learns model parameters and augmentation hyperparameters in a single training. Our HBA uses a hypernetwork to approximate a population-based training algorithm, which enables us to tune augmentation hyperparameters by gradient descent. Besides, we introduce a weight sharing strategy that simplifies our hypernetwork architecture and speeds up our search algorithm. We conduct experiments on CIFAR-10, CIFAR-100, SVHN, and ImageNet. Our results demonstrate that HBA is significantly faster than state-of-the-art methods while achieving competitive accuracy.