Abstract:Large Language Models (LLMs) are increasingly used to assess news credibility, yet little is known about how they make these judgments. While prior research has examined political bias in LLM outputs or their potential for automated fact-checking, their internal evaluation processes remain largely unexamined. Understanding how LLMs assess credibility provides insights into AI behavior and how credibility is structured and applied in large-scale language models. This study benchmarks the reliability and political classifications of state-of-the-art LLMs - Gemini 1.5 Flash (Google), GPT-4o mini (OpenAI), and LLaMA 3.1 (Meta) - against structured, expert-driven rating systems such as NewsGuard and Media Bias Fact Check. Beyond assessing classification performance, we analyze the linguistic markers that shape LLM decisions, identifying which words and concepts drive their evaluations. We uncover patterns in how LLMs associate credibility with specific linguistic features by examining keyword frequency, contextual determinants, and rank distributions. Beyond static classification, we introduce a framework in which LLMs refine their credibility assessments by retrieving external information, querying other models, and adapting their responses. This allows us to investigate whether their assessments reflect structured reasoning or rely primarily on prior learned associations.
Abstract:Music has always been central to human culture, reflecting and shaping traditions, emotions, and societal changes. Technological advancements have transformed how music is created and consumed, influencing tastes and the music itself. In this study, we use Network Science to analyze musical complexity. Drawing on $\approx20,000$ MIDI files across six macro-genres spanning nearly four centuries, we represent each composition as a weighted directed network to study its structural properties. Our results show that Classical and Jazz compositions have higher complexity and melodic diversity than recently developed genres. However, a temporal analysis reveals a trend toward simplification, with even Classical and Jazz nearing the complexity levels of modern genres. This study highlights how digital tools and streaming platforms shape musical evolution, fostering new genres while driving homogenization and simplicity.