Abstract:In this paper, we present new image segmentation methods based on hidden Markov random fields (HMRFs) and cuckoo search (CS) variants. HMRFs model the segmentation problem as a minimization of an energy function. CS algorithm is one of the recent powerful optimization techniques. Therefore, five variants of the CS algorithm are used to compute a solution. Through tests, we conduct a study to choose the CS variant with parameters that give good results (execution time and quality of segmentation). CS variants are evaluated and compared with non-destructive testing (NDT) images using a misclassification error (ME) criterion.
Abstract:Segmentation of medical images is an essential part in the process of diagnostics. Physicians require an automatic, robust and valid results. Hidden Markov Random Fields (HMRF) provide powerful model. This latter models the segmentation problem as the minimization of an energy function. Cuckoo search (CS) algorithm is one of the recent nature-inspired meta-heuristic algorithms. It has shown its efficiency in many engineering optimization problems. In this paper, we use three cuckoo search algorithm to achieve medical image segmentation.
Abstract:Image segmentation is the process of partitioning the image into significant regions easier to analyze. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the Conjugate Gradient algorithm (CG) for image segmentation, based on the Hidden Markov Random Field. Since derivatives are not available for this expression, finite differences are used in the CG algorithm to approximate the first derivative. The approach is evaluated using a number of publicly available images, where ground truth is known. The Dice Coefficient is used as an objective criterion to measure the quality of segmentation. The results show that the proposed CG approach compares favorably with other variants of Hidden Markov Random Field segmentation algorithms.