Abstract:DeepONets and Koopman autoencoders are two prevalent neural operator architectures. These architectures are autoencoders. An adversarial addition to an autoencoder have improved performance of autoencoders in various areas of machine learning. In this paper, the use an adversarial addition for these two neural operator architectures is studied.
Abstract:Hyperparameters searches are computationally expensive. This paper studies some general choices of hyperparameters and training methods specifically for operator learning. It considers the architectures DeepONets, Fourier neural operators and Koopman autoencoders for several differential equations to find robust trends. Some options considered are activation functions, dropout and stochastic weight averaging.
Abstract:Koopman autoencoders are a prevalent architecture in operator learning. But, the loss functions and the form of the operator vary significantly in the literature. This paper presents a fair and systemic study of these options. Furthermore, it introduces novel loss terms.