Abstract:Documentation debt hinders the effective utilization of open-source software. Although code summarization tools have been helpful for developers, most would prefer a detailed account of each parameter in a function rather than a high-level summary. However, generating such a summary is too intricate for a single generative model to produce reliably due to the lack of high-quality training data. Thus, we propose a multi-step approach that combines multiple task-specific models, each adept at producing a specific section of a docstring. The combination of these models ensures the inclusion of each section in the final docstring. We compared the results from our approach with existing generative models using both automatic metrics and a human-centred evaluation with 17 participating developers, which proves the superiority of our approach over existing methods.
Abstract:Neural Networks are prone to having lesser accuracy in the classification of images with noise perturbation. Convolutional Neural Networks, CNNs are known for their unparalleled accuracy in the classification of benign images. But our study shows that they are extremely vulnerable to noise addition while Feed-forward Neural Networks, FNNs show very less correspondence with noise perturbation, maintaining their accuracy almost undisturbed. FNNs are observed to be better at classifying noise-intensive, single-channeled images that are just sheer noise to human vision. In our study, we have used the hand-written digits dataset, MNIST with the following architectures: FNNs with 1 and 2 hidden layers and CNNs with 3, 4, 6 and 8 convolutions and analyzed their accuracies. FNNs stand out to show that irrespective of the intensity of noise, they have a classification accuracy of more than 85%. In our analysis of CNNs with this data, the deceleration of classification accuracy of CNN with 8 convolutions was half of that of the rest of the CNNs. Correlation analysis and mathematical modelling of the accuracy trends act as roadmaps to these conclusions.